Anatomía Foliar de Calliandra riparia Pittier en un Gradiente Altitudinal de la Cuenca del Río Tocuyo, Lara, Venezuela

Contenido principal del artículo

Gelvis Alvarado
Damelis Jáuregui
Marina García
Hipólito Alvarado
Freddy Zambrano

Resumen

Se estudió la anatomía foliar de Calliandra riparia en un gradiente altitudinal con el fin de establecer la posible plasticidad estructural de esta especie para adaptarse a los cambios ambientales relacionados con el aumento en la altitud. Se recolectaron hojas a 800 y 1030 msnm, se fijaron en FAA (formaldehido, ácido acético y etanol) y luego se procesaron usando técnicas clásicas utilizadas en microscopía óptica. La anatomía de la lámina, de la nervadura central y del pecíolo fue similar en las dos altitudes consideradas; sin embargo, se observaron diferencias en las variables anatómicas cuantificadas a nivel de lámina, las cuales parecen estar relacionadas con el aumento en la radiación solar a mayor altitud. Dichas diferencias son evidencia de que esta especie desarrolla algunas estrategias anatómicas a nivel foliar para su adaptación a lo largo del gradiente altitudinal.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Alvarado, G., Jáuregui, D., García, M., Alvarado, H., & Zambrano, F. (2020). Anatomía Foliar de Calliandra riparia Pittier en un Gradiente Altitudinal de la Cuenca del Río Tocuyo, Lara, Venezuela. INVESTIGATIO, (13), 13–24. https://doi.org/10.31095/investigatio.2020.13.2
Sección
Artículos
Biografía del autor/a

Gelvis Alvarado, Universidad Pedagógica Experimental Libertador, Laboratorio de Microscopía Óptica Dr. Fulgencio Proverbio, Caracas-Venezuela

Laboratorio de Microscopía Óptica "Dr. Fulgencio Proverbio"

Damelis Jáuregui, Universidad Central de Venezuela, Facultad de Agronomía, Instituto de Botánica Agrícola, Maracay-Venezuela

Facultad de Agronomía

Instituto de Botánica Agrícola

Marina García, Universidad Técnica de Manabí, Facultad de Ingeniería Agronómica, Portoviejo-Ecuador.

Facultad de Ingeniería Agronómica

Hipólito Alvarado, Universidad Centroccidental Lisandro Alvarado, Decanato de Agronomía, Lara-Venezuela.

Decanato de Agronomía

Freddy Zambrano, Universidad Técnica de Manabí, Facultad de Ingeniería Agronómica, Portoviejo-Ecuador.

Facultad de Ingeniería Agronómica

Citas

Akinlabi, A.A., Jimoh, M.A. y Saheed, S.A. (2014). Effects of altitudinal gradients on morpho anatomical characters of Chromolaena odorata (L.) King & Robinson. FUTA Journal of Research in Sciences, (2), 150-156.

Bello, M.A., y Forero E. (2005). Revisión del género Calliandra (Leguminosae: Mimosoideae: Colombia. En D.C. Romero y E. Forero (Eds), Estudios en leguminosas colombianas (pp. 39-110) Bogotá, Colombia: Editorial Guadalupe LTDA.

Borrelli, N., Benvenuto M. L. y Osterrieth M. 2016. Calcium oxalate crystal production and density at different phenological stages of soybean plants (Glycine max L.) from the southeast of the Pampean Plain, Argentina. Plant Biology, 18(6), 1016-1024.

Carlquist S. (1994). Anatomy of tropical alpine plants. En P.W. Rundel, A.P. Smith y F.C. Meinzer (Eds.), Tropical Alpine Enviroments: Plant Form and Function (pp. 111-125), Cambridge: Cambridge University Press.

Carrasco-Ríos L. (2009). Efecto de la radiación ultravioleta-B en plantas. Idesia, 27(3), 59-76.

Carvalho D., Barros C. y Scarano F. (2009). In situ variation in leaf anatomy and morphology of Andira legalis (Leguminosae) in two neighbouring but contrasting light environments in a Brazilian sandy coastal plain. Acta Botanica Brasilica, 23(1), 267-273.

Close, D.C. y McArthur C. (2002). Rethinking the role of many plant phenolics – protection from photodamage not herbivores? OIKOS, 99, 166-172.

Cornelius C., Estrella N., Franz H. y Menzel A. (2013). Linking altitudinal gradients and tempeture responses of plant phenology in the Bavarian Alps. Plant Biology 15 (Supl.), 57-69.

Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M. y Robledo, C. (2014) InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Recuperado de http://www. infostat. com. ar.

El-Emary, N., Makboul, M., Abdel-Hafiz M. y M. Magdy. 2003. Macro-and micromorphology of the stem and leaf of Calliandra haematocephala (Hassk.) cultivated in Egypt. Bulletin Pharmaceutical Sciences, 26, 153-170.

Ely, F., Torres, F. y Gaviria, J. (2005). Relación entre la morfoanatomía foliar de tres especies de Miconia (Melastomataceae) con su hábitat y distribución altitudinal en el parque nacional Sierra Nevada de Mérida, Venezuela. Acta Botanica Venezuelica, 28(2), 275-300.

Hokche, O., Berry P.E. y Huber, O. (eds.) (2008). Nuevo Catálogo de la Flora Vascular de Venezuela 1-860. Caracas: Fundación Instituto Botánico de Venezuela.

Jacobs, J.F., Koper G.J.M. y Ursemb W.N.J. (2007). UV protective coatings: A botanical approach. Progress in Organic Coatings, 58, 166-171.

Jiménez-Noriega, M.S., Terrazas, T. y López-Mata L. (2015). Variación morfo-anatómica de Ribes ciliatum a lo largo de un gradiente altitudinal en el norte de la Sierra Nevada, México. Botanical Sciences, 93(1), 1-10.

Johansen, D. (1940). Plant microtechnique. New York: Mc Graw Hill.

Judd, W., Campbell, Ch.S., Kellogg, E.A., Stevens, P.F. y Donoghue, M.J (2008). (ed.). Sunderland, Massachusetts: Sinauer Associates.

Kofidis, G., Bosabaldis, A.M y Moustakas, M. (2003). Contemporary seasonal and altitudinal variations of structural features in Oregano (Origanum vulgare L.). Annals of Botany, 92, 635-645.

Körner C. (1999). Alpine plant life. Berlin: Springer-Verlag.

Kouwenberg, L.L., Kürschner, W.M. y McElwain, J.C. (2007). Stomatal frequency change over

altitudinal gradients: prospects for paleoaltimetry. Reviews in Mineralogy y Geochemistry, 66, 215-241.

Kürschner, W., Stulen, I., Wagner, F. y Kuiper, P. (1998) Comparison of palaeobotanical observations with experimental data on the leaf anatomy of durmast oak (Quercus petraea) (Fagaceae) in response to environmental changes. Annals of Botany, 81, 657-664.

León, W. (2008). Anatomía de madera en 31 especies de la subfamilia Mimosoideae (Leguminosae) en Venezuela. Colombia Forestal, 11, 113-135.

Lersten, N.R. y Curtis, J.D. (1993). Paraveinal mesophyll in Calliandra tweedii and C. emarginata (Leguminosae; Mimosoideae). American Journal of Botany, 80(5), 561-568.

Levizou, E., Drilias, P., Psaras, G.K. y Manetas, Y. (2004). Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. New Phytology, 165, 463-472.

Leython, S. y Jáuregui D. (2008). Morfología de la semilla y anatomía de la cubierta seminal de cinco especies de Calliandra (Leguminosae-Mimosoideae) de Venezuela. Revista Biología Tropical, 56(3), 1075-1086.

Mayer, J.L.S., Cardoso, N.A., Cuquel, F. y Bona C. (2008). Formação de raízes em estacas de duas espécies de Calliandra (Leguminosae - Mimosoideae). Rodriguesia, 59(3), 487-495.

McElwain, J.C. (2004). Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology, 32, 1017-1020.

Metcalfe, C.R y Chalk, L. (1950). Anatomy of the dicotyledons. Vol. I, Oxford: Clarendon Press.

Molano-Flores, B. 2001. Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Annals of Botany, 88(3), 387-391. 88.

Molina-Montenegro, M. (2008). Variación de la pubescencia foliar en plantas y sus implicaciones funcionales a lo largo de gradientes altitudinales. Ecosistemas, 17(1), 146-154.

Molina-Montenegro M.A. y Cavieres L.A. (2010). Variación altitudinal de los atributos morfo-fisiológicos en dos especies de plantas alto-andinas y sus implicancias contra la fotoinhibición. Gayana Botánica, 67, 1-11.

Nejadhabibvash, F., Rezaei E.Chi. y Pirzad, A. (2017). Anatomy of Salvia limbata in relation to altitudinal gradient in West Azerbaijan (Iran). International Journal of Horticultural Science and Technology, 4(2), 205-216.

Paridari, I. Ch., S.G. Jalali, A. Zarafshar y P. Bruschi. (2013). Leaf macro- and micro-morphological altitudinal variability of Carpinus betulus in the Hyrcanian forest (Iran). Journal of Forestry Research, 24(2), 301-307.

Pittier, H. (1927). Árboles y arbustos nuevos de Venezuela 6-8, 80.

Royer, D.L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology, 114, 1-28.

Sandoval, E. (2005). Técnicas aplicadas al estudio de la anatomía vegetal. México: Universidad Nacional Autónoma de México.

Serra- Gama, T., de Souza, Garcia, T.B. y Araújo-Lucas, F.C. (2009). Morfo-anatomia foliar de Calliandra surinamensis Benth. - (Leguminosae - Mimosoideae). En 60° Congreso Nacional de Botânica, Brasil.

Tsukaya, H. (2005). Leaf shape: genetic controls and environmental factors. The International Journal of Developmental Biology, 49, 547-555.

Wang, R., Yu, G., He, N., Wang, Q., Xia, F., Zhao, N., Xu, Z. y Ge, J. (2014). Elevation-related variation in leaf stomatal traits as a function of plant functional type: Evidence from Changbai Mountain, China. PLoS One, 9(12), e115395.