Comportamiento Térmico y Estructural del Concreto Expuesto a Altas Temperaturas: Una Revisión de la Literatura

Contenido principal del artículo

Arlinton Edwin Cuyán Barboza
Jairo Leoncio Mio Monja
Sócrates Pedro Muñoz Pérez

Resumen

Las altas temperaturas originadas por un incendio, ambientes de trabajo o uso, son conocidos por degradar gravemente a los materiales de construcción, siendo el concreto uno de los más utilizados, afectando así las propiedades mecánicas, físicas y químicas. Debido a la importancia del comportamiento del concreto a altas temperaturas, se han incrementado el estudio. Bajo este punto se revisaron 56 artículos indexados entre los años 2015 al 2020 los cuales se distribuyen de la siguiente manera: 21 artículos son de Scopus, 18 de Scielo y 17 de ScienceDirect sobre la influencia de la temperatura en parámetros como resistencia a la compresión, resistencia a la flexión, módulo de elasticidad, el desprendimiento del mismo, así como la influencia de tipos de agregados, aditivos y fibras. Concluyendo que la adición de ciertos componentes externo al concreto en la exposición a altas temperaturas puede ayudar a mejorar la resistencia a la compresión, como las fibras de acero, sin embargo, éstas no mitigan totalmente el daño en condiciones extremas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Cuyán Barboza, A. E., Mio Monja, J. L., & Muñoz Pérez, S. P. (2021). Comportamiento Térmico y Estructural del Concreto Expuesto a Altas Temperaturas: Una Revisión de la Literatura. INVESTIGATIO, (16), 78–93. https://doi.org/10.31095/investigatio.2021.16.7
Sección
Artículos
Biografía del autor/a

Arlinton Edwin Cuyán Barboza, Universidad Señor de Sipán

Estudiante de Ingeniería Civil de la Universidad Señor de Sipán-Lambayeque, Perú

Jairo Leoncio Mio Monja, Universidad Señor de Sipán

Estudiante de Ingeniería Civil de la Universidad Señor de Sipán-Lambayeque, Perú

Citas

Abed, M., & De Brito, J. (2020). Evaluation of high-performance self-compacting concrete using alternative materials and exposure to elevated temperatures by non-destructive testing. Journal of Building Engineering, 32(101720), 1-9. doi:10.1016/j.jobe.2020.101720

Ahmad, S., Bhargava, P., Chourasia, A., & Usmani, A. (2020). Effect of elevated temperatures on the shear-friction behaviour of concrete: Experimental and analytical study. Engineering Structures, 225(111305), 1-14. doi:10.1016/j.engstruct.2020.111305

Alaskar, A., Albidah, A., Saeed, A., Alyousef, R., & Mohammadhosseini, H. (2020). Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. Journal of Building Engineering, 35(102108). doi:10.1016/j.jobe.2020.102108

Al-Rousan, R. (2020). Optimum Endurance Time of Reinforced Concrete One Way Slab Subjected to Fire. Procedia Manufacturing, 44, 520-527. doi:10.1016/j.promfg.2020.02.260

Alves, F., De Carvalho, M., Rodrigues, A., & Bezerra, A. (2018). Behavior of concrete reinforced with polypropylene fiber exposed to high temperatures. Procedia Structural Integrity, 11(2018), 91–98. doi:10.1016/j.prostr.2018.11.013

Ashkezari, G., & Mehrdad, R. (2020). Thermal and mechanical evaluation of ultra - high performance fiber - reinforced concrete and conventional concrete subjected to high temperatures. Journal of Building Engineering, 32(101621), 1-11. doi:10.1016/j.jobe.2020.101621

Aygörmez, Y., Al-mashhadani, M., & Canpolat, O. (2019). High-temperature effects on white cement-based slurry infiltrated fiber concrete with metakaolin and fly ash additive. Revista de la construcción, 19(2), 324-333. doi:10.7764/RDLC.19.2.324

Bi, J., Liu, P., & Gan, F. (2020). Effects of the cooling treatment on the dynamic behavior of ordinary concrete exposed to high temperatures. Construction and Building Materials, 248(118688), 1-12. doi:10.1016/j.conbuildmat.2020.118688

Bilotta, A., Compagnone, A., Esposito, L., & Nigro, E. (2020). Structural behaviour of FRP reinforced concrete slabs in fire. Engineering Structures, 221(111058), 1-16. doi:https://doi.org/10.1016/j.engstruct.2020.111058

Bolina, F., Gil, A., Fernandes, B., Hennemann, G., Gonc¸alves, J., & Tutikian, B. (2020). Influence of design durability on concrete columns fire performance. Journal of Materials Research and Technology, 9(3), 4968-4977. doi:10.1016/j.jmrt.2020.03.015

Buch, S., & Sharma, U. (2019). An empirical model for determining the fire resistance of Reinforced Concrete columns. Construction and Building Materials, 225, 838-852. doi:10.1016/j.conbuildmat.2019.07.183

Caetano, H., Rodrigues, J., & Pimienta, P. (2019). Flexural strength at high temperatures of a high strength steel and polypropylene fiber concrete. Construction and Building Materials, 227(116721), 1-14. doi:10.1016/j.conbuildmat.2019.116721

Choe, G., Kim, G., Kim, H., Hwang, E., Lee, S., Son, M., & Nam, J. (2020). Influence of amorphous metallic fibers on spalling properties of high-strength concrete exposed to high temperature. Construction and Building Material, 263(120711), 1-11. doi:10.1016/j.conbuildmat.2020.120711

Choi, E., & Shin, Y. (2011). The structural behavior and simplified thermal analysis of normal-strength and high-strength concrete beams under fire. Engineering Structures, 33(4), 1123–1132. doi:10.1016/j.engstruct.2010.12.030

Coelho, A. R., Roveda Campos, G. C., Cardoso dos Santos, C., Samy Pereira, H. R., & Furlaneto, T. (2020). Influência do choque térmico por resfriamento brusco do concreto após exposição a elevadas temperaturas em simulação de incêndio. Revista Materia, 25(1). doi:10.1590/s1517-707620200001.0894

Consolazio, G., McVay, M., & Rish, J. (1998). Measurement and prediction of pore pressures in saturated cement mortar subjected to radiant heating. ACI Materials Journal, 95(5), 525-536.

Da Silva, J., Marco, P., & Toledo, R. (2020). High temperatures effect on mechanical and physical performance of normal and high strength recycled aggregate concrete. Fire Safety Journal, 117(103222), 1-10. doi:10.1016/j.firesaf.2020.103222

Degliuomini Kirchhof, L., Antocheves de Lima, R. C., Costa Quispe, A., Pinto da Silva Filho, L. C., & Barros da Silva Santos Neto, A. (2020). Effect of Moisture Content on the Behavior of High Strength Concrete at High Temperatures. Revista Materia, 25(1). doi:10.1590/s1517-707620200001.0898

Domagała, L. (2019). Resistance of insulating-structural concretes to high temperature. Structural Integrity Procedia, 23, 642-647. doi:10.1016/j.prostr.2020.01.110

Dongsheng, Z., Mingjie, M., Shangrong, Z., & Qiuning, Y. (2019). Influence of stress damage and high temperature on the freeze–thaw resistance of concrete with fly ash as fine aggregate. Construction and Building Materials, 229(116845), 1-13. doi:https://doi.org/10.1016/j.conbuildmat.2019.116845

Du, H., & Zhang, M. (2020). Experimental investigation of thermal pore pressure in reinforced C80 high performance concrete slabs at elevated temperatures. Construction and Building Materials, 260, 1-10. doi:10.1016/j.conbuildmat.2020.120451

Dvorkin, L., Zhitkovsky, V., Stepasyuk, Y., & Ribakov, Y. (2018). A method for design of high strength concrete composition considering curing temperature and duration. Construction and Building Materials, 186, 731-739. doi:10.1016/j.conbuildmat.2018.08.014

Ehrenbring, H., Ortolan, V., Pacheco, F., Gil, A., & Tutikian, B. (2017). Avaliação da resistência residual de lajes alveolares em concreto armado em uma edificação industrial após incêndio. Revista Materia, 22(3). doi:10.1590/S1517-707620170003.0208

Guo, Z., Zhuang, C., Li, Z., & Chen, Y. (2020). Mechanical properties of carbon fiber reinforced concrete (CFRC) after exposure to high temperatures. Composite Structures, 256(2), 1-14. doi:10.1016/j.compstruct.2020.113072

Guruprasad, Y., & Ramaswamy, A. (2018). Micromechanical analysis of concrete and reinforcing steel exposed to high temperature. Construction and Building Materials, 158, 761–773. doi:10.1016/j.conbuildmat.2017.10.061

Holan, J., Novák, J., Müller, P., & Štefan, R. (2020). Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures. Construction and Building Materials, 248, 1-10. doi: 10.1016/j.conbuildmat.2020.118662

Jeronimo, V., Piccinini, A., Silva, B., Godinho, D., Bernardini, A., & Vargas, A. (2020). Influence of concrete admixture on the bond strength of reinforced concrete submitted to high temperature. IBRACON Structures and Materials Journal, 13(2), 212-221. doi:10.1016/j.conbuildmat.2020.118662

Karahan, O., Durak, U., İlkentapar, S., Atabey, İ., & Atiş, C. (2019). Resistance of polypropylene fibered mortar to elevated temperature under different cooling regimes. Revista de la construcción, 18(2), 386-397. doi:10.7764/RDLC.18.2.386

Keshavarz, Z., & Mostofinejad, D. (2020). Effects of high-temperature exposure on concrete containing waste porcelain coarse aggregates and steel chips. Journal of Building Engineering, 29, 2-15. doi:10.1016/j.jobe.2020.101211

Latif, W., Arsalan, R., & Khaliq, W. (2018). Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures. Construction and Building Materials, 185, 44-56. doi:10.1016/j.conbuildmat.2018.07.051

Li, Y., & Zhang, D. (2021). Effect of lateral restraint and inclusion of polypropylene and steel fibers on spalling behavior, pore pressure, and thermal stress in ultra-high performance concrete (UHPC) at elevated temperature. Construction and Building Materials, 271. doi:10.1016/j.conbuildmat.2020.121879

Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature. Construction and Building Materials, 99, 371-383. doi:10.1016/j.conbuildmat.2015.05.131

Maanser, A., Benouis, A., & Ferhoune, N. (2018). Effect of high temperature on strength and mass loss of admixtured concretes. Construction and Building Materials, 166, 916-921. doi:10.1016/j.conbuildmat.2018.01.181

Moghadam, M., & Izadifard, R. (2020). Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures. Fire Safety Journal, 113, 1-11. doi:10.1016/j.firesaf.2020.102978

Müller, P., Novák, J., & Holan, J. (2019). Destructive and non-destructive experimental investigation of polypropylene fibre reinforced concrete subjected to high temperature. Journal of Building Engineering, 26, 1-9. doi:10.1016/j.jobe.2019.100906

Nastic, M., Bentz, E., Sung, O., Papanikolaou, V., & Tcherner, J. (2019). Shrinkage and creep strains of concrete exposed to low relative humidity and high-temperature environments. Nuclear Engineering and Design, 352, 1-7. doi:10.1016/j.nucengdes.2019.110154

Ngoc, K. B., Tomoaki, S., & Hiroshi, T. (2018). Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature. Construction and Building Materials, 187, 361-373. doi:10.1016/j.conbuildmat.2018.06.237

Othuman Mydin, M., Zamzani, N., & Ghani, A. (2020). Influence of elevated temperatures on compressive and flexural strengths of Cocos nucifera Linn. fiber strengthened lightweight foam crate. Revista de la construcción, 19, 112-126. doi:10.7764/RDLC.19.1.112-126

Passos, L., Moreno, A., & Souza, A. (2020). Lightweight concrete with coarse aggregate from ceramic waste at high temperatures. IBRACON Structures and Materials Journal, 13(2). doi:10.1590/s1983-41952020000200012

Rizzuto, J., Kamal, M., Elsayad, H., Bashandy, A., Etman, Z., Aboel Roos, M., & Shaaban, I. (2020). Effect of self-curing admixture on concrete properties in hot climate conditions. Construction and Building Materials, 261, 1-11. doi:10.1016/j.conbuildmat.2020.119933

Roufael, G., Beaucour, A., Eslami, J., Hoxha, D., & Noumowé, A. (2020). Influence of lightweight aggregates on the physical and mechanical residual properties of concrete subjected to high temperatures. Construction and Building Materials, 268, 1-13. doi:10.1016/j.conbuildmat.2020.121221

Ruvalcaba, F., & Covarrubias, M. (2017). La Ingeniería Estructural de Fuego un enfoque nacional y ejemplo de aplicación. Ingeniería Investigación y Tecnología, 18(3), 253-264. Obtenido de http://www.scielo.org.mx/pdf/iit/v18n3/1405-7743-iit-18-03-00253.pdf

Ryu, E., Kim, H., Chun, Y., Yeo, I., & Shin, Y. (2019). Effect of heated areas on thermal response and structural behavior of reinforced concrete walls exposed to fire. Engineering Structures, 207, 1-12. doi:10.1016/j.engstruct.2020.110165

Sadrmomtazi, A., Gashti, S., & Tahmouresi, B. (2020). Residual strength and microstructure of fiber-reinforced self-compacting concrete exposed to high temperatures. Construction and Building Materials, 230, 1-15. doi:10.1016/j.conbuildmat.2019.116969

Štefan, R., M., F., Fládr, J., Horníková, K., & Holan, J. (2020). Thermal, spalling, and mechanical behaviour of various types of cementitious composites exposed to fire: Experimental and numerical analysis. Construction and Building Materials, 262, 1-22. doi:10.1016/j.conbuildmat.2020.119676

Takeshi, M., Masuhiro, B., & Makoto , S. (2017). An experimental study on the temperature and structural behavior of a concrete wall exposed to fire after a high-velocity impact by a hard projectile. Fire Safety Journal, 91, 506-516. doi:10.1016/j.firesaf.2017.03.023

Talal, M., & Arsalan, R. (2020). Influence of carbon nanofibers (CNF) on the performance of high-strength concrete exposed to elevated temperatures. Construction and Building Materials, 268, 1-13. doi:10.1016/j.conbuildmat.2020.121108

Thanaraj, D., Anand., Arulraj, P., & Al-Jabri, K. (2020). Investigation on the structural and thermal performance of reinforced concrete beams exposed to standard fire. Journal of Building Engineering, 32. doi:10.1016/j.jobe.2020.101764

Varona, F., Baeza, F., & Ivorra, S. (2017). Estudio de las propiedades mecánicas residuales de hormigones expuestos altas temperaturas. Hormigon y Acero, 69(286), 235-241. doi:10.1016/j.hya.2017.04.004

Varona, F., Baeza, F., Bru, D., & Ivorra, S. (2018). Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete. Construction and Building Materials, 208(30), 283-295. doi:10.1016/j.conbuildmat.2019.02.129

Zhang, D., Liu, Y., & Tan, K. (2020). Spalling resistance and mechanical properties of strain-hardening ultrahigh performance concrete at elevated temperature. Construction and Building Materials, 266, 1-9. doi:10.1016/j.conbuildmat.2020.120961

Zhang, D., Yang, Q., Mao, M., & Li, J. (2020). Carbonation performance of concrete with fly ash as fine aggregate after stress damage and high-temperature exposure. Construction and Building Materials, 242, 1-13. doi:10.1016/j.conbuildmat.2020.118125

Zhang, H., Li, L., Yuan, C., Wang, Q., Kumar, P., & Shi, X. (2020). Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high-temperature exposure and prediction of its residual compressive strength. Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120924

Zhou, A., Qiu, Q., Lun, C., & Lau, D. (2020). Interfacial performance of aramid, basalt, and carbon fiber reinforced polymer-bonded concrete exposed to high temperature. Composites Part A, 131, 1-11. doi:10.1016/j.compositesa.2020.105802