Comportamiento Térmico y Estructural del Concreto Expuesto a Altas Temperaturas: Una Revisión de la Literatura
Contenido principal del artículo
Resumen
Las altas temperaturas originadas por un incendio, ambientes de trabajo o uso, son conocidos por degradar gravemente a los materiales de construcción, siendo el concreto uno de los más utilizados, afectando así las propiedades mecánicas, físicas y químicas. Debido a la importancia del comportamiento del concreto a altas temperaturas, se han incrementado el estudio. Bajo este punto se revisaron 56 artículos indexados entre los años 2015 al 2020 los cuales se distribuyen de la siguiente manera: 21 artículos son de Scopus, 18 de Scielo y 17 de ScienceDirect sobre la influencia de la temperatura en parámetros como resistencia a la compresión, resistencia a la flexión, módulo de elasticidad, el desprendimiento del mismo, así como la influencia de tipos de agregados, aditivos y fibras. Concluyendo que la adición de ciertos componentes externo al concreto en la exposición a altas temperaturas puede ayudar a mejorar la resistencia a la compresión, como las fibras de acero, sin embargo, éstas no mitigan totalmente el daño en condiciones extremas.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
INVESTIGATIO es de acceso abierto y el contenido está disponible de manera gratuita a través de su sitio web: http://revistas.uees.edu.ec/index.php/IRR/.
Para reforzar nuestra política de acceso abierto, la revista INVESTIGATIO se publica bajo una licencia Creative Commons Reconocimiento-No Comercial 4.0 Internacional (CC-BY-NC 4.0), la cual permite compartir (copiar y redistribuir el material en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material), bajo la condición de que se den los créditos correspondientes y no se haga uso comercial de los materiales.
Citas
Abed, M., & De Brito, J. (2020). Evaluation of high-performance self-compacting concrete using alternative materials and exposure to elevated temperatures by non-destructive testing. Journal of Building Engineering, 32(101720), 1-9. doi:10.1016/j.jobe.2020.101720
Ahmad, S., Bhargava, P., Chourasia, A., & Usmani, A. (2020). Effect of elevated temperatures on the shear-friction behaviour of concrete: Experimental and analytical study. Engineering Structures, 225(111305), 1-14. doi:10.1016/j.engstruct.2020.111305
Alaskar, A., Albidah, A., Saeed, A., Alyousef, R., & Mohammadhosseini, H. (2020). Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. Journal of Building Engineering, 35(102108). doi:10.1016/j.jobe.2020.102108
Al-Rousan, R. (2020). Optimum Endurance Time of Reinforced Concrete One Way Slab Subjected to Fire. Procedia Manufacturing, 44, 520-527. doi:10.1016/j.promfg.2020.02.260
Alves, F., De Carvalho, M., Rodrigues, A., & Bezerra, A. (2018). Behavior of concrete reinforced with polypropylene fiber exposed to high temperatures. Procedia Structural Integrity, 11(2018), 91–98. doi:10.1016/j.prostr.2018.11.013
Ashkezari, G., & Mehrdad, R. (2020). Thermal and mechanical evaluation of ultra - high performance fiber - reinforced concrete and conventional concrete subjected to high temperatures. Journal of Building Engineering, 32(101621), 1-11. doi:10.1016/j.jobe.2020.101621
Aygörmez, Y., Al-mashhadani, M., & Canpolat, O. (2019). High-temperature effects on white cement-based slurry infiltrated fiber concrete with metakaolin and fly ash additive. Revista de la construcción, 19(2), 324-333. doi:10.7764/RDLC.19.2.324
Bi, J., Liu, P., & Gan, F. (2020). Effects of the cooling treatment on the dynamic behavior of ordinary concrete exposed to high temperatures. Construction and Building Materials, 248(118688), 1-12. doi:10.1016/j.conbuildmat.2020.118688
Bilotta, A., Compagnone, A., Esposito, L., & Nigro, E. (2020). Structural behaviour of FRP reinforced concrete slabs in fire. Engineering Structures, 221(111058), 1-16. doi:https://doi.org/10.1016/j.engstruct.2020.111058
Bolina, F., Gil, A., Fernandes, B., Hennemann, G., Gonc¸alves, J., & Tutikian, B. (2020). Influence of design durability on concrete columns fire performance. Journal of Materials Research and Technology, 9(3), 4968-4977. doi:10.1016/j.jmrt.2020.03.015
Buch, S., & Sharma, U. (2019). An empirical model for determining the fire resistance of Reinforced Concrete columns. Construction and Building Materials, 225, 838-852. doi:10.1016/j.conbuildmat.2019.07.183
Caetano, H., Rodrigues, J., & Pimienta, P. (2019). Flexural strength at high temperatures of a high strength steel and polypropylene fiber concrete. Construction and Building Materials, 227(116721), 1-14. doi:10.1016/j.conbuildmat.2019.116721
Choe, G., Kim, G., Kim, H., Hwang, E., Lee, S., Son, M., & Nam, J. (2020). Influence of amorphous metallic fibers on spalling properties of high-strength concrete exposed to high temperature. Construction and Building Material, 263(120711), 1-11. doi:10.1016/j.conbuildmat.2020.120711
Choi, E., & Shin, Y. (2011). The structural behavior and simplified thermal analysis of normal-strength and high-strength concrete beams under fire. Engineering Structures, 33(4), 1123–1132. doi:10.1016/j.engstruct.2010.12.030
Coelho, A. R., Roveda Campos, G. C., Cardoso dos Santos, C., Samy Pereira, H. R., & Furlaneto, T. (2020). Influência do choque térmico por resfriamento brusco do concreto após exposição a elevadas temperaturas em simulação de incêndio. Revista Materia, 25(1). doi:10.1590/s1517-707620200001.0894
Consolazio, G., McVay, M., & Rish, J. (1998). Measurement and prediction of pore pressures in saturated cement mortar subjected to radiant heating. ACI Materials Journal, 95(5), 525-536.
Da Silva, J., Marco, P., & Toledo, R. (2020). High temperatures effect on mechanical and physical performance of normal and high strength recycled aggregate concrete. Fire Safety Journal, 117(103222), 1-10. doi:10.1016/j.firesaf.2020.103222
Degliuomini Kirchhof, L., Antocheves de Lima, R. C., Costa Quispe, A., Pinto da Silva Filho, L. C., & Barros da Silva Santos Neto, A. (2020). Effect of Moisture Content on the Behavior of High Strength Concrete at High Temperatures. Revista Materia, 25(1). doi:10.1590/s1517-707620200001.0898
Domagała, L. (2019). Resistance of insulating-structural concretes to high temperature. Structural Integrity Procedia, 23, 642-647. doi:10.1016/j.prostr.2020.01.110
Dongsheng, Z., Mingjie, M., Shangrong, Z., & Qiuning, Y. (2019). Influence of stress damage and high temperature on the freeze–thaw resistance of concrete with fly ash as fine aggregate. Construction and Building Materials, 229(116845), 1-13. doi:https://doi.org/10.1016/j.conbuildmat.2019.116845
Du, H., & Zhang, M. (2020). Experimental investigation of thermal pore pressure in reinforced C80 high performance concrete slabs at elevated temperatures. Construction and Building Materials, 260, 1-10. doi:10.1016/j.conbuildmat.2020.120451
Dvorkin, L., Zhitkovsky, V., Stepasyuk, Y., & Ribakov, Y. (2018). A method for design of high strength concrete composition considering curing temperature and duration. Construction and Building Materials, 186, 731-739. doi:10.1016/j.conbuildmat.2018.08.014
Ehrenbring, H., Ortolan, V., Pacheco, F., Gil, A., & Tutikian, B. (2017). Avaliação da resistência residual de lajes alveolares em concreto armado em uma edificação industrial após incêndio. Revista Materia, 22(3). doi:10.1590/S1517-707620170003.0208
Guo, Z., Zhuang, C., Li, Z., & Chen, Y. (2020). Mechanical properties of carbon fiber reinforced concrete (CFRC) after exposure to high temperatures. Composite Structures, 256(2), 1-14. doi:10.1016/j.compstruct.2020.113072
Guruprasad, Y., & Ramaswamy, A. (2018). Micromechanical analysis of concrete and reinforcing steel exposed to high temperature. Construction and Building Materials, 158, 761–773. doi:10.1016/j.conbuildmat.2017.10.061
Holan, J., Novák, J., Müller, P., & Štefan, R. (2020). Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures. Construction and Building Materials, 248, 1-10. doi: 10.1016/j.conbuildmat.2020.118662
Jeronimo, V., Piccinini, A., Silva, B., Godinho, D., Bernardini, A., & Vargas, A. (2020). Influence of concrete admixture on the bond strength of reinforced concrete submitted to high temperature. IBRACON Structures and Materials Journal, 13(2), 212-221. doi:10.1016/j.conbuildmat.2020.118662
Karahan, O., Durak, U., İlkentapar, S., Atabey, İ., & Atiş, C. (2019). Resistance of polypropylene fibered mortar to elevated temperature under different cooling regimes. Revista de la construcción, 18(2), 386-397. doi:10.7764/RDLC.18.2.386
Keshavarz, Z., & Mostofinejad, D. (2020). Effects of high-temperature exposure on concrete containing waste porcelain coarse aggregates and steel chips. Journal of Building Engineering, 29, 2-15. doi:10.1016/j.jobe.2020.101211
Latif, W., Arsalan, R., & Khaliq, W. (2018). Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures. Construction and Building Materials, 185, 44-56. doi:10.1016/j.conbuildmat.2018.07.051
Li, Y., & Zhang, D. (2021). Effect of lateral restraint and inclusion of polypropylene and steel fibers on spalling behavior, pore pressure, and thermal stress in ultra-high performance concrete (UHPC) at elevated temperature. Construction and Building Materials, 271. doi:10.1016/j.conbuildmat.2020.121879
Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature. Construction and Building Materials, 99, 371-383. doi:10.1016/j.conbuildmat.2015.05.131
Maanser, A., Benouis, A., & Ferhoune, N. (2018). Effect of high temperature on strength and mass loss of admixtured concretes. Construction and Building Materials, 166, 916-921. doi:10.1016/j.conbuildmat.2018.01.181
Moghadam, M., & Izadifard, R. (2020). Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures. Fire Safety Journal, 113, 1-11. doi:10.1016/j.firesaf.2020.102978
Müller, P., Novák, J., & Holan, J. (2019). Destructive and non-destructive experimental investigation of polypropylene fibre reinforced concrete subjected to high temperature. Journal of Building Engineering, 26, 1-9. doi:10.1016/j.jobe.2019.100906
Nastic, M., Bentz, E., Sung, O., Papanikolaou, V., & Tcherner, J. (2019). Shrinkage and creep strains of concrete exposed to low relative humidity and high-temperature environments. Nuclear Engineering and Design, 352, 1-7. doi:10.1016/j.nucengdes.2019.110154
Ngoc, K. B., Tomoaki, S., & Hiroshi, T. (2018). Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature. Construction and Building Materials, 187, 361-373. doi:10.1016/j.conbuildmat.2018.06.237
Othuman Mydin, M., Zamzani, N., & Ghani, A. (2020). Influence of elevated temperatures on compressive and flexural strengths of Cocos nucifera Linn. fiber strengthened lightweight foam crate. Revista de la construcción, 19, 112-126. doi:10.7764/RDLC.19.1.112-126
Passos, L., Moreno, A., & Souza, A. (2020). Lightweight concrete with coarse aggregate from ceramic waste at high temperatures. IBRACON Structures and Materials Journal, 13(2). doi:10.1590/s1983-41952020000200012
Rizzuto, J., Kamal, M., Elsayad, H., Bashandy, A., Etman, Z., Aboel Roos, M., & Shaaban, I. (2020). Effect of self-curing admixture on concrete properties in hot climate conditions. Construction and Building Materials, 261, 1-11. doi:10.1016/j.conbuildmat.2020.119933
Roufael, G., Beaucour, A., Eslami, J., Hoxha, D., & Noumowé, A. (2020). Influence of lightweight aggregates on the physical and mechanical residual properties of concrete subjected to high temperatures. Construction and Building Materials, 268, 1-13. doi:10.1016/j.conbuildmat.2020.121221
Ruvalcaba, F., & Covarrubias, M. (2017). La Ingeniería Estructural de Fuego un enfoque nacional y ejemplo de aplicación. Ingeniería Investigación y Tecnología, 18(3), 253-264. Obtenido de http://www.scielo.org.mx/pdf/iit/v18n3/1405-7743-iit-18-03-00253.pdf
Ryu, E., Kim, H., Chun, Y., Yeo, I., & Shin, Y. (2019). Effect of heated areas on thermal response and structural behavior of reinforced concrete walls exposed to fire. Engineering Structures, 207, 1-12. doi:10.1016/j.engstruct.2020.110165
Sadrmomtazi, A., Gashti, S., & Tahmouresi, B. (2020). Residual strength and microstructure of fiber-reinforced self-compacting concrete exposed to high temperatures. Construction and Building Materials, 230, 1-15. doi:10.1016/j.conbuildmat.2019.116969
Štefan, R., M., F., Fládr, J., Horníková, K., & Holan, J. (2020). Thermal, spalling, and mechanical behaviour of various types of cementitious composites exposed to fire: Experimental and numerical analysis. Construction and Building Materials, 262, 1-22. doi:10.1016/j.conbuildmat.2020.119676
Takeshi, M., Masuhiro, B., & Makoto , S. (2017). An experimental study on the temperature and structural behavior of a concrete wall exposed to fire after a high-velocity impact by a hard projectile. Fire Safety Journal, 91, 506-516. doi:10.1016/j.firesaf.2017.03.023
Talal, M., & Arsalan, R. (2020). Influence of carbon nanofibers (CNF) on the performance of high-strength concrete exposed to elevated temperatures. Construction and Building Materials, 268, 1-13. doi:10.1016/j.conbuildmat.2020.121108
Thanaraj, D., Anand., Arulraj, P., & Al-Jabri, K. (2020). Investigation on the structural and thermal performance of reinforced concrete beams exposed to standard fire. Journal of Building Engineering, 32. doi:10.1016/j.jobe.2020.101764
Varona, F., Baeza, F., & Ivorra, S. (2017). Estudio de las propiedades mecánicas residuales de hormigones expuestos altas temperaturas. Hormigon y Acero, 69(286), 235-241. doi:10.1016/j.hya.2017.04.004
Varona, F., Baeza, F., Bru, D., & Ivorra, S. (2018). Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete. Construction and Building Materials, 208(30), 283-295. doi:10.1016/j.conbuildmat.2019.02.129
Zhang, D., Liu, Y., & Tan, K. (2020). Spalling resistance and mechanical properties of strain-hardening ultrahigh performance concrete at elevated temperature. Construction and Building Materials, 266, 1-9. doi:10.1016/j.conbuildmat.2020.120961
Zhang, D., Yang, Q., Mao, M., & Li, J. (2020). Carbonation performance of concrete with fly ash as fine aggregate after stress damage and high-temperature exposure. Construction and Building Materials, 242, 1-13. doi:10.1016/j.conbuildmat.2020.118125
Zhang, H., Li, L., Yuan, C., Wang, Q., Kumar, P., & Shi, X. (2020). Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high-temperature exposure and prediction of its residual compressive strength. Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120924
Zhou, A., Qiu, Q., Lun, C., & Lau, D. (2020). Interfacial performance of aramid, basalt, and carbon fiber reinforced polymer-bonded concrete exposed to high temperature. Composites Part A, 131, 1-11. doi:10.1016/j.compositesa.2020.105802