La Contribución de RESNET34 en la detección de COVID-19, utilizando radiografías de tórax
Contenido principal del artículo
Resumen
En la lucha contra el avance del COVID-19, las imágenes de radiografías de tórax se convierten en una alternativa en la detección del virus. El interpretar las placas radiográficas para la detección del virus en ocasiones se complica por la presencia de otras enfermedades respiratorias. Se propone como complemento en la detección del virus, una red neuronal convolucional con arquitectura RESNET34 que permiten clasificar las imágenes de radiografías de tórax con COVID-19 e imágenes NOCOVID. El modelo presenta un grado de confiabilidad del 94,78% en la predicción de las imágenes en las dos clases COVID-19 y NOCOVID y un error en la predicción de las imágenes del 5,22%. Los resultados obtenidos, muestran un alto grado de predicción y clasificación de casos de COVID por encima del 90%, demostrando el aporte de la inteligencia artificial en el desarrollo de tecnologías preventivas de enfermedades respiratorias, además de apoyo para el personal médico.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
INVESTIGATIO es de acceso abierto y el contenido está disponible de manera gratuita a través de su sitio web: http://revistas.uees.edu.ec/index.php/IRR/.
Para reforzar nuestra política de acceso abierto, la revista INVESTIGATIO se publica bajo una licencia Creative Commons Reconocimiento-No Comercial 4.0 Internacional (CC-BY-NC 4.0), la cual permite compartir (copiar y redistribuir el material en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material), bajo la condición de que se den los créditos correspondientes y no se haga uso comercial de los materiales.
Citas
Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2021). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence, 51(2), 854–864. https://doi.org/10.1007/s10489-020-01829-7
Abiyev, R. H., & Ma’aitah, M. K. S. (2018). Deep Convolutional Neural Networks for Chest Diseases Detection. Journal of Healthcare Engineering, 2018. https://doi.org/10.1155/2018/4168538
Ali, K., John, C. N., & Nabeel, M. (2017). AI4COVID-19 : AI Enabled Preliminary Diagnosis for COVID-19 from Cough Samples via an App arXiv : 2004 . 01275v3 [ eess . AS ] 7 Apr 2020. 1–12.
Bai, H. X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J. W., Tran, T. M. L., … Liao, W.-H. (2020). Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology, 200823. https://doi.org/10.1148/radiol.2020200823
Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud Platform. In Building Machine Learning and Deep Learning Models on Google Cloud Platform (1st ed.). https://doi.org/10.1007/978-1-4842-4470-8
Cohen, J. P., Morrison, P., & Dao, L. (2020). COVID-19 Image Data Collection. Retrieved from http://arxiv.org/abs/2003.11597
Dumoulin, V., Visin, F., & Box, G. E. P. (2018). A guide to convolution arithmetic for deep learning. Retrieved from http://ethanschoonover.com/solarized
Ghoshal, B., & Tucker, A. (2020). Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection. Retrieved from https://www.brunel.ac.uk/computer-science
Goel, T., Murugan, R., Mirjalili, S., & Chakrabartty, D. K. (2021). OptCoNet: an optimized convolutional neural network for an automatic diagnosis of COVID-19. Applied Intelligence, 51(3), 1351–1366. https://doi.org/10.1007/s10489-020-01904-z
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing, 4e (Fourth). Londres: Pearson Education.
Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep Learning. In The MIT Press. https://doi.org/10.1017/CBO9781107415324.004
Haykin, S. (2009). Neural Networks and Learning Machines (Third). Ontario: Pearson Education.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90
Howard, J., & Gugger, S. (2020). Deep Learning for Coders with fastai and PyTorch. In O’Reilly Media (First Edit, Vol. 66). Canada.
Huawei Servicios. (2021). Combatiendo al COVID-19 con inteligencia artificial_HUAWEI CLOUD. Retrieved May 27, 2021, from https://www.huaweicloud.com/intl/es-us/cases/covid19.html
Kesim, E., Dokur, Z., & Olmez, T. (2019). X-ray chest image classification by a small-sized convolutional neural network. 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019, 1–5. https://doi.org/10.1109/EBBT.2019.8742050
Khan, A., Shah, J., & Bhat, M. (2020). CoroNet: A Deep Neural Network for Detection and Diagnosis of Covid-19 from Chest X-ray Images.
Kumar, A., Gupta, P. K., & Srivastava, A. (2020). A review of modern technologies for tackling COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 569–573. https://doi.org/https://doi.org/10.1016/j.dsx.2020.05.008
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lee, K.-S., Kim, J. Y., Jeon, E.-T., Choi, W. S., Kim, N. H., & Lee, K. Y. (2020). Personalized Medicine Evaluation of Scalability and Degree of Fine-Tuning of Deep Convolutional Neural Networks for COVID-19 Screening on Chest X-ray Images Using Explainable Deep-Learning Algorithm. https://doi.org/10.3390/jpm10040213
Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., … Xia, J. (2020). Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on Chest CT. Radiology.
Ly, C., Vachet, C., Schwerdt, I., Abbott, E., Brenkmann, A., McDonald, L. W., & Tasdizen, T. (2020). Determining uranium ore concentrates and their calcination products via image classification of multiple magnifications. Journal of Nuclear Materials, 533. https://doi.org/10.1016/j.jnucmat.2020.152082
Martínez, E., Díez, A., Ibáñez, L., Ossaba, S., & Borruel, S. (2021). Radiologic diagnosis of patients with COVID-19. Radiología (English Edition), 63(1), 56–73. https://doi.org/10.1016/j.rxeng.2020.11.001
Michelucci, U. (2018). Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks. https://doi.org/https://doi.org/10.1007/978-1-4842-3790-8
MSP, M. de S. P. del E. (2021). Actualización de casos de coronavirus en Ecuador. Retrieved from Infografía situacion coronavirus COVID-19 website: https://www.salud.gob.ec/wp-content/uploads/2021/05/INFOGRAFIA-NACIONALCOVID19-COE-NACIONAL-08h00-17052021.pdf
Narin, A., Kaya, C., & Pamuk, Z. (2020, March 24). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. ArXiv. arXiv.
Nayak, S. R., Nayak, D. R., Sinha, U., Arora, V., & Pachori, R. B. (2021). Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomedical Signal Processing and Control, 64, 102365. https://doi.org/10.1016/J.BSPC.2020.102365
OMS, O. M. de la S. (2020). SITUATION IN NUMBERS total (new cases in last 24 hours).
Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. G. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 105532. https://doi.org/https://doi.org/10.1016/j.cmpb.2020.105532
Perry, T. (2020). A Sweat Sensing Patch Aimed at Athletes Takes on COVID-19 - IEEE Spectrum. Retrieved April 10, 2020, from https://spectrum.ieee.org/view-from-the-valley/the-institute/ieee-member-news/sweat-sensing-patch-aimed-athletes-takes-covid19
Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. https://doi.org/10.1016/J.IMU.2020.100360
Salman, F., Abu-Naser, S., Alajrami, E., Abu-Nasser, B., & Ashqar, B. (2020). COVID-19 Detection using Artificial Intelligence. International Journal of Academic Engineering Research (IJAER), 4(3), 18–25.
Santosh, K. C. (2020). AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data. Journal of Medical Systems, 44(5), 93. https://doi.org/10.1007/s10916-020-01562-1
Swapnarekha, H., Behera, H. S., Nayak, J., & Naik, B. (2020). Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. Chaos, Solitons and Fractals, 138, 109947. https://doi.org/10.1016/j.chaos.2020.109947
Ucar, F., & Korkmaz, D. (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Medical Hypotheses, 140, 109761. https://doi.org/10.1016/J.MEHY.2020.109761
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. In Diabetes and Metabolic Syndrome: Clinical Research and Reviews (Vol. 14, pp. 337–339). https://doi.org/10.1016/j.dsx.2020.04.012
Vose, A., Balma, J., Heye, A., Rigazzi, A., Siegel, C., Moise, D., … Sukumar, S. R. (2019). Recombination of Artificial Neural Networks.
Waltz, E. (2020). How Do Coronavirus Tests Work? - IEEE Spectrum. Retrieved April 10, 2020, from https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/how-do-coronavirus-tests-work
Wang, L., & Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images. Retrieved from http://arxiv.org/abs/2003.09871
Wang, S., Nayak, D., Guttery, D., Zhang, X., & Zhang, Y.-D. (2021). COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Information Fusion, 68, 131–148. https://doi.org/10.1016/j.inffus.2020.11.005
WHO, W. H. O. (2021). Weekly Operational Update on COVID-19. Retrieved from Update on COVID-19 website: https://www.who.int/publications/m/item/weekly-operational-update-covid-19---17-may-2021
Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020). COVID-19 Screening on Chest X-ray Images Using Deep Learning based Anomaly Detection.