CONTRIBUTION OF RESNET34 IN THE DETECTION OF COVID-19, USING CHEST X-RAYS.
Main Article Content
Abstract
In the fight against the advance of COVID-19, chest X-ray images become an alternative in the detection of the virus. Interpreting radiographic films for virus detection is sometimes complicated by the presence of other respiratory diseases. A convolutional neural network with RESNET34 architecture is proposed as a complement in the detection of the virus, which allows classifying the images of chest radiographs with COVID-19 and NOCOVID images. The model presents a degree of reliability of 94.78% in the prediction of the images in the two classes COVID-19 and NOCOVID and an error in the prediction of the images of 5.22%. The results obtained show a high degree of prediction and classification of COVID cases above 90%, demonstrating the contribution of artificial intelligence in the development of preventive technologies for respiratory diseases, as well as support for medical personnel.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
INVESTIGATIO es de acceso abierto y el contenido está disponible de manera gratuita a través de su sitio web: http://revistas.uees.edu.ec/index.php/IRR/.
Para reforzar nuestra política de acceso abierto, la revista INVESTIGATIO se publica bajo una licencia Creative Commons Reconocimiento-No Comercial 4.0 Internacional (CC-BY-NC 4.0), la cual permite compartir (copiar y redistribuir el material en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material), bajo la condición de que se den los créditos correspondientes y no se haga uso comercial de los materiales.
References
Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2021). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence, 51(2), 854–864. https://doi.org/10.1007/s10489-020-01829-7
Abiyev, R. H., & Ma’aitah, M. K. S. (2018). Deep Convolutional Neural Networks for Chest Diseases Detection. Journal of Healthcare Engineering, 2018. https://doi.org/10.1155/2018/4168538
Ali, K., John, C. N., & Nabeel, M. (2017). AI4COVID-19 : AI Enabled Preliminary Diagnosis for COVID-19 from Cough Samples via an App arXiv : 2004 . 01275v3 [ eess . AS ] 7 Apr 2020. 1–12.
Bai, H. X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J. W., Tran, T. M. L., … Liao, W.-H. (2020). Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology, 200823. https://doi.org/10.1148/radiol.2020200823
Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud Platform. In Building Machine Learning and Deep Learning Models on Google Cloud Platform (1st ed.). https://doi.org/10.1007/978-1-4842-4470-8
Cohen, J. P., Morrison, P., & Dao, L. (2020). COVID-19 Image Data Collection. Retrieved from http://arxiv.org/abs/2003.11597
Dumoulin, V., Visin, F., & Box, G. E. P. (2018). A guide to convolution arithmetic for deep learning. Retrieved from http://ethanschoonover.com/solarized
Ghoshal, B., & Tucker, A. (2020). Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection. Retrieved from https://www.brunel.ac.uk/computer-science
Goel, T., Murugan, R., Mirjalili, S., & Chakrabartty, D. K. (2021). OptCoNet: an optimized convolutional neural network for an automatic diagnosis of COVID-19. Applied Intelligence, 51(3), 1351–1366. https://doi.org/10.1007/s10489-020-01904-z
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing, 4e (Fourth). Londres: Pearson Education.
Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep Learning. In The MIT Press. https://doi.org/10.1017/CBO9781107415324.004
Haykin, S. (2009). Neural Networks and Learning Machines (Third). Ontario: Pearson Education.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90
Howard, J., & Gugger, S. (2020). Deep Learning for Coders with fastai and PyTorch. In O’Reilly Media (First Edit, Vol. 66). Canada.
Huawei Servicios. (2021). Combatiendo al COVID-19 con inteligencia artificial_HUAWEI CLOUD. Retrieved May 27, 2021, from https://www.huaweicloud.com/intl/es-us/cases/covid19.html
Kesim, E., Dokur, Z., & Olmez, T. (2019). X-ray chest image classification by a small-sized convolutional neural network. 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019, 1–5. https://doi.org/10.1109/EBBT.2019.8742050
Khan, A., Shah, J., & Bhat, M. (2020). CoroNet: A Deep Neural Network for Detection and Diagnosis of Covid-19 from Chest X-ray Images.
Kumar, A., Gupta, P. K., & Srivastava, A. (2020). A review of modern technologies for tackling COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 569–573. https://doi.org/https://doi.org/10.1016/j.dsx.2020.05.008
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lee, K.-S., Kim, J. Y., Jeon, E.-T., Choi, W. S., Kim, N. H., & Lee, K. Y. (2020). Personalized Medicine Evaluation of Scalability and Degree of Fine-Tuning of Deep Convolutional Neural Networks for COVID-19 Screening on Chest X-ray Images Using Explainable Deep-Learning Algorithm. https://doi.org/10.3390/jpm10040213
Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., … Xia, J. (2020). Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on Chest CT. Radiology.
Ly, C., Vachet, C., Schwerdt, I., Abbott, E., Brenkmann, A., McDonald, L. W., & Tasdizen, T. (2020). Determining uranium ore concentrates and their calcination products via image classification of multiple magnifications. Journal of Nuclear Materials, 533. https://doi.org/10.1016/j.jnucmat.2020.152082
Martínez, E., Díez, A., Ibáñez, L., Ossaba, S., & Borruel, S. (2021). Radiologic diagnosis of patients with COVID-19. Radiología (English Edition), 63(1), 56–73. https://doi.org/10.1016/j.rxeng.2020.11.001
Michelucci, U. (2018). Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks. https://doi.org/https://doi.org/10.1007/978-1-4842-3790-8
MSP, M. de S. P. del E. (2021). Actualización de casos de coronavirus en Ecuador. Retrieved from Infografía situacion coronavirus COVID-19 website: https://www.salud.gob.ec/wp-content/uploads/2021/05/INFOGRAFIA-NACIONALCOVID19-COE-NACIONAL-08h00-17052021.pdf
Narin, A., Kaya, C., & Pamuk, Z. (2020, March 24). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. ArXiv. arXiv.
Nayak, S. R., Nayak, D. R., Sinha, U., Arora, V., & Pachori, R. B. (2021). Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomedical Signal Processing and Control, 64, 102365. https://doi.org/10.1016/J.BSPC.2020.102365
OMS, O. M. de la S. (2020). SITUATION IN NUMBERS total (new cases in last 24 hours).
Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. G. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 105532. https://doi.org/https://doi.org/10.1016/j.cmpb.2020.105532
Perry, T. (2020). A Sweat Sensing Patch Aimed at Athletes Takes on COVID-19 - IEEE Spectrum. Retrieved April 10, 2020, from https://spectrum.ieee.org/view-from-the-valley/the-institute/ieee-member-news/sweat-sensing-patch-aimed-athletes-takes-covid19
Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. https://doi.org/10.1016/J.IMU.2020.100360
Salman, F., Abu-Naser, S., Alajrami, E., Abu-Nasser, B., & Ashqar, B. (2020). COVID-19 Detection using Artificial Intelligence. International Journal of Academic Engineering Research (IJAER), 4(3), 18–25.
Santosh, K. C. (2020). AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data. Journal of Medical Systems, 44(5), 93. https://doi.org/10.1007/s10916-020-01562-1
Swapnarekha, H., Behera, H. S., Nayak, J., & Naik, B. (2020). Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. Chaos, Solitons and Fractals, 138, 109947. https://doi.org/10.1016/j.chaos.2020.109947
Ucar, F., & Korkmaz, D. (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Medical Hypotheses, 140, 109761. https://doi.org/10.1016/J.MEHY.2020.109761
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. In Diabetes and Metabolic Syndrome: Clinical Research and Reviews (Vol. 14, pp. 337–339). https://doi.org/10.1016/j.dsx.2020.04.012
Vose, A., Balma, J., Heye, A., Rigazzi, A., Siegel, C., Moise, D., … Sukumar, S. R. (2019). Recombination of Artificial Neural Networks.
Waltz, E. (2020). How Do Coronavirus Tests Work? - IEEE Spectrum. Retrieved April 10, 2020, from https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/how-do-coronavirus-tests-work
Wang, L., & Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images. Retrieved from http://arxiv.org/abs/2003.09871
Wang, S., Nayak, D., Guttery, D., Zhang, X., & Zhang, Y.-D. (2021). COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Information Fusion, 68, 131–148. https://doi.org/10.1016/j.inffus.2020.11.005
WHO, W. H. O. (2021). Weekly Operational Update on COVID-19. Retrieved from Update on COVID-19 website: https://www.who.int/publications/m/item/weekly-operational-update-covid-19---17-may-2021
Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020). COVID-19 Screening on Chest X-ray Images Using Deep Learning based Anomaly Detection.