Baseline Study of Heavy Metal Concentrations in Powdered Chocolate Marketed in Guayaquil, Ecuador
Main Article Content
Abstract
Heavy metal contamination has been demonstrated in cocoa in Ecuador. The impact of this contamination on powdered chocolate for national consumption has not, however, been studied. This study's objective was to generate a baseline of arsenic, cadmium, and lead concentration in powdered chocolate marketed in Guayaquil. To execute this study, chocolate samples were acquired in the north, center, and south of the city in stores and supermarkets. The three most popular brands were chosen and analyzed by atomic absorption spectrophotometry with a graphite furnace. Lead was not detectable in the chocolate; arsenic was found at low levels in Brand-1 (0.030 ± 0.021 mg / kg) and in Brand-3 (0.060 ± 0.034 mg / kg). On the contrary, cadmium was found in all chocolate brands, with concentrations of 0.236 ± 0.082 mg/kg in Brand-1 and 0.169 ± 0.066 mg/kg in Brand-2. Brand-3 exceeded the maximum permissible limit of 0.600 mg/kg according to European regulations with 1.440 ± 0.212 mg/kg, representing a risk for consumers.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
INVESTIGATIO es de acceso abierto y el contenido está disponible de manera gratuita a través de su sitio web: http://revistas.uees.edu.ec/index.php/IRR/.
Para reforzar nuestra política de acceso abierto, la revista INVESTIGATIO se publica bajo una licencia Creative Commons Reconocimiento-No Comercial 4.0 Internacional (CC-BY-NC 4.0), la cual permite compartir (copiar y redistribuir el material en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material), bajo la condición de que se den los créditos correspondientes y no se haga uso comercial de los materiales.
References
Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives and Contaminants: Part B Surveillance, 11(2), 92–102. https://doi.org/10.1080/19393210.2017.1420700
Alcaldía de Guayaquil. (2016). Guayaquil - Puerto Principal de Ecuador. https://guayaquil.gob.ec/noticias-actuales/246
Alcívar, M., & Pernía, B. (2019). Determinación de cadmio y plomo en productos derivados de la caña: azúcar blanca, morena y panela, comercializados en Ecuador. V Congreso Iberoamericano Sobre Ambiente y Sustentabilidad, 14–15
Alves Peixoto, R. R., Oliveira, A., & Cadore, S. (2018). Risk assessment of cadmium and chromium from chocolate powder. Food Additives and Contaminants: Part B Surveillance, 11(4), 256–263. https://doi.org/10.1080/19393210.2018.1499676
Anecacao. (2015). Asociación Nacional de Exportadores de Cacao-Ecuador. http://www.anecacao.com/index.php/es/estadisticas/estadisticas-actuales.html.
Ahn, J., Park, M. Y., Kang, M. Y., Shin, I. S., An, S., & Kim, H. R. (2020). Occupational lead exposure and brain tumors: Systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 17(11), 1–14. https://doi.org/10.3390/ijerph17113975
Anyimah-Ackah, E., Ofosu, I. W., Lutterodt, H. E., & Darko, G. (2019). Exposures and risks of arsenic, cadmium, lead, and mercury in cocoa beans and cocoa-based foods: A systematic review. Food Quality and Safety, 3(1), 1–8. https://doi.org/10.1093/fqsafe/fyy025
Arévalo-Hernández, C. O., Arévalo-Gardini, E., Farfán, A., He, Z., & Baligar, V. C. (2020). Growth and nutritional responses of wild and domesticated cacao genotypes to soil cd stress. Science of the Total Environment, 763, 144021. https://doi.org/10.1016/j.scitotenv.2020.144021
Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292
ATSDR. (2020). Resúmenes de Salud Pública - Cadmio https://www.atsdr.cdc.gov/es/phs/es_phs5.html#:~:text=En%20general%20no%20se%20han,m%C3%A1s%20cadmio%20que%20los%20adultos
Barraza, F, Schreck, E., Leveque, T., Uzu, G., López, F., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao : A field study in areas impacted by oil activities in Ecuador. Environmental Pollution Journal, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080
Barraza, F., Maurice, L., Uzu, G., Becerra, S., López, F., Ochoa-Herrera, V., Ruales, J., & Schreck, E. (2018). Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities. Science of the Total Environment, 622–623, 106–120. https://doi.org/10.1016/j.scitotenv.2017.11.246
Barraza, F., Schreck, E., Uzu, G., Lévêque, T., Zouiten, C., Boidot, M., & Maurice, L. (2021). Beyond cadmium accumulation: Distribution of other trace elements in soils and cacao beans in Ecuador. Environmental Research, 192, 110241. https://doi.org/10.1016/j.envres.2020.110241
Beltrán, E., Hernández, K., & Rodríguez, A. (2017). Determinación de cadmioen chocolate de mesa comercializado en la zona metropolitana de San Salvador. San Salvador: Universidad de El Salvador. Obtenido de http://ri.ues.edu.sv/id/eprint/13124/1/Determinaci%C3%B3n%20de%20cadmio%20en%20chocolate%.pdf
Bertoldi, D., Barbero, F., Caligiani, A. & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beas and cocoas products. Food Control, 65, 46-53. https://doi.org/10.1016/j.foodcont.2016.01.013
Casteblanco, J. A. (2018). Heavy metals remediation with potential application in cocoa cultivation. Granja, 27(1), 21–35. https://doi.org/10.17163/lgr.n27.2018.02
Čejka, P., Horák, T., Dvořák, J., Čulík, J., & Jurková, M. (2011). Monitoring of the distribution of some heavy metals during brewing process. Ecol Chem Engineering, 18, 67–74.
Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106
Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., & Baligar, V. C. (2016). Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere, 150. https://doi.org/10.1016/j.chemosphere.2016.02.013
Chen, F., Dong, J., Wang, F., Wu, F., Zhang, G., Li, G., Chen, Z., Chen, J., & Wei, K. (2007). Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 67, 2082–2088. https://doi.org/10.1016/j.chemosphere.2006.10.014
Chen, X., Zhu, G., Wang, Z., Zhou, H., He, P., Liu, Y., & Jin, T. (2019). Ecotoxicology and Environmental Safety The association between lead and cadmium co-exposure and renal dysfunction. Ecotoxicology and Environmental Safety, 173, 429–435. https://doi.org/10.1016/j.ecoenv.2019.01.121
de Souza, P. A., Moreira, L. F., Sarmento, D. H. A., & da Costa, F. B. (2018). Cacao— Theobroma cacao. In Exotic Fruits (pp. 69–76). Elsevier. https://doi.org/10.1016/b978-0-12-803138-4.00010-1
Deaker, M., and Maher, W. (1999). Determination of arsenic in arsenic compounds and marine biological tissues using low volume microwave digestion and electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 14, 1193–1207. https://doi: 10.1039/a903790j
Devóz, P. P., Gomes, W. R., Araújo, M. L. De, Ribeiro, L., Pedron, T., Maria, L., Antunes, G., Lemos, B., Jr, F. B., Rafael, G., Barcelos, M., Ribeiro, D. L., Pedron, T., Maria, L., Antunes, G., Batista, B. L., Jr, F. B., Rafael, G., Barcelos, M., & Pb, L. (2017). Lead (Pb) exposure induces disturbances in epigenetic status in workers exposed to this metal. Journal of Toxicology and Environmental Health, Part A, 00(00), 1–8. https://doi.org/10.1080/15287394.2017.1357364
FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2018). FAOSTAT. http://www.fao.org/faostat/en/#home
Fayet-Moore, F. (2016). Effect of flavored milk vs plain milk on total milk intake and nutrient provision in children. Nutrition Reviews, 74(1), 1–17. https://doi.org/10.1093/nutrit/nuv031
Flora, S., & Agrawal, S. (2017). Arsenic, Cadmium, and Lead. In R. Gupta (Ed.), Reproductive and Developmental Toxicology (2nd ed., pp. 537–566). Elsevier Inc. https://doi.org/10.1016/B978-0-12-804239-7.00031-7
Furcal-Beriguete, P., & Torres-Morales, J. L. (2020). Determinación de concentraciones de cadmio en plantaciones de Theobroma cacao L. en Costa Rica. Revista Tecnología En Marcha, 33, 122–137. https://doi.org/10.18845/tm.v33i1.5027
García, P., Esmeralda, P., Cruz, A., & Isabel, M. (2012). Los efectos del cadmio en la salud. Revista de Especialidades Médico-Quirúrgicas, 17(3), 199–205.
Gramss, G. (2020). Control of Heavy Metals from Barley and Wheat Grains during Malting and Brewing. Advances in Nutrition and Food Science, 2020(05). https://doi.org/10.37722/ANAFS.20205
Hamid, Y., Tang, L., Sohail, M. I., Cao, X., Hussain, B., Aziz, M. Z., Usman, M., He, Z. li, & Yang, X. (2019). An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Science of the Total Environment, 660, 80–96. https://doi.org/10.1016/j.scitotenv.2018.12.419
Huamani, H., Huauya, M.A., Mansilla, L., Florida, N. & Neia, G. (2012). Presence of heavy metals in organic cacao (Theobroma cacao L.) crops. Acta Agron, 61 (4), 339-344.
Johansson, E., Yahia, M. W., Arroyo, I., & Bengs, C. (2018). Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador. International Journal of Biometeorology, 62(3), 387–399. https://doi.org/10.1007/s00484-017-1329-x
Khan, K. M., Chakraborty, R., Bundschuh, J., Bhattacharya, P., & Parvez, F. (2020). Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Science of the Total Environment, 710, 136071. https://doi.org/10.1016/j.scitotenv.2019.136071
Kruszewski, B., Obiedziński, M. W., & Kowalska, J. (2018). Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. Journal of Food Composition and Analysis, 66, 127–135. https://doi.org/10.1016/j.jfca.2017.12.012
Laila, K., Zug, M., Alfredo, H., Yupanqui, H., Meyberg, F., Cierjacks, J. S., & Cierjacks, A. (2019). Cadmium Accumulation in Peruvian Cacao ( Theobroma cacao L .) and Opportunities for Mitigation. Water Air Soil Pollut, 230, 72. https://doi.org/10.1007/s11270-019-4109-x
Lo Dico, M., Galvano, F., Dugo, G., Carlo, D., Macaluso, A., Vella, A., Giangrosso, G., Cammileri, G., & Ferrantelli, V. (2018). Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion. Food Chemistry, 245, 1163–1168. https://doi.org/10.1016/j.foodchem.2017.11.052
Maddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). El cadmio cargado de cacao amenaza la salud humana y la economía del cacao: una visión crítica. Science of the Total Environment, 137645. https://doi.org/10.1016/j.scitotenv.2020.137645
Maiti, S., Chattopadhyay, S., Deb, B., Samanta, T., Maji, G., Pan, B., Ghosh, A., & Ghosh, D. (2012). Antioxidant and metabolic impairment result in DNA damage in arsenic-exposed individuals with severe dermatological manifestations in Eastern India. Environmental Toxicology, 27(6), 342–350. https://doi.org/10.1002/tox.20647
Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58(1), 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0
Mite, F., Carrillo, M., & Durango, W. (2010). Avances del monitoreo de Prescencia de cadmio en almendras de cacao, suelo y agua en Ecuador. XII Congreso Ecuatoriano de La Ciencia Del Suelo XII Congreso Ecuatoriano de La Ciencia Del Suelo, 17–19.
Mohamed, R., Zainudin, B. H., & Yaakob, A. S. (2020). Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave-assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chemistry, 303, 125392. https://doi.org/10.1016/j.foodchem.2019.125392
Mounicou, S., Szpunar, J., Andrey, D., Blake, C., & Lobinski, R. (2003). Concentrations and bioavailability of cadmium and lead in cocoa powder and related products. Food Additives and Contaminants, 20(4), 343–352. https://doi.org/10.1080/0265203031000077888
Peixoto, R. R. A., Devesa, V., Vélez, D., Cervera, M. L., & Cadore, S. (2016). Study of the factors influencing the bioaccessibility of 10 elements from chocolate drink powder. Journal of Food Composition and Analysis, 48, 41–47. https://doi.org/10.1016/j.jfca.2016.02.002
Pernía, B., Mero, M., Bravo, K., Ramírez, N., Lopez, D., Muñoz, J., & Egas, F. (2015). Detección de cadmio y plomo en leche de vaca comercializada en la ciudad de Guayaquil , Ecuador. Revista Científica de Ciencias Naturales y Ambientales, 8 (2), 81-86 https://www.academia.edu/43077535/Detección_de_cadmio_y_plomo_en_leche_de_vaca_comercializada_en_la_ciudad_de_Guayaquil_Ecuador
Rueda, J. (2015). Proyecto de factibilidad para la elaboración y comercializacion de chocolate de cacao en polvo fluido, en el canton Huaquillas provincia Del Oro. Tesis de Ingeniera Comercial. Universidad Nacional de Loja, Loja, Ecuador.
Thompson, J. L., Gerard, P. D., & Drake, M. A. (2007). Chocolate milk and the Hispanic consumer. Journal of Food Science, 72(9), S666- S675. https://doi.org/10.1111/j.1750-3841.2007.00559.x
Yohei, K., Takahiro, W., Kyoko, H., & Hiroshi, A. (2018). Surveillance of Cadmium Concentration in Chocolate and Cocoa Powder Products Distributed in Japan. Food Hyg. Saf. Sci. Vol., 59(6), 269–274. https://doi.org/10.3358/shokueishi.59.269