Spontaneous focus on mathematical structures: patterns and sorting
Main Article Content
Abstract
The study aimed to examine whether preschool children spontaneously focus on mathematical structures - patterns and classification - and whether that spontaneous focus is associated with their patterning abilities. The methodology was quantitative, descriptive, and comparative. Participants included 60 preschoolers who were evaluated at the end of the school year. The results indicated that most of them spontaneously focus on creating a mathematical structure and that there is no association between their tendency to focus on mathematical structures and their patterning abilities. No differences were observed in the spontaneous focus related to gender or socioeconomic background. It is concluded that these results allow us to point to the universal nature of the spontaneous focus on mathematical structures.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
When an article is approved, the author or authors keep the rights or authorship and cede to PODIUM the right to be the first able to edit it, reproduce it, exhibit it and communicate it by printed or electronica media.
In order to reinforce our open access policy, PODIUM journal is published under a license named “Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0)”. This license allows sharing (copying and redistributing the material in any means or format) and adapting (re-mixing, transforming, and creating starting from the material). Corresponding credits must be given and no commercial use of the materials is allowed.
Partial or complete reproduction of articles published in PODIUM is authorized, as long as the author is appropriately cited as the source and the reproduction has no commercial purposes.
References
Andrews, P., y Sayers, J. (2015). Identifying opportunities for grade one children to acquire foundational number sense: Developing a framework for cross cultural classroom analyses. Early Childhood Education Journal, (43), 257–267. https://doi.org/10.1007/s10643-014-0653-6
Aunio, P., y Niemivirta, M. (2010). Predicting children’s mathematical performance in grade one by early numeracy. Learning and Individual Differences, 20(5), 427–435. https://doi.org/10.1016/j.lindif.2010.06.003
Bojorque, G., y Gonzales, N. (2021). Patrones matemáticos en los niveles de Inicial y Preparatoria: Análisis del currículo. INNOVA Research Journal, 6(1), 47–60. https://doi.org/10.33890/innova.v6.n1.2021.1433
Bojorque, G., Torbeyns, J., Hannula-Sormunen, M., Van Nijlen, D., y Verschaffel, L. (2017). Development of SFON in Ecuadorian Kindergartners. European Journal of Psychology of Education, (32), 449–462. doi: 10.1007/s10212-016-0306-9
Bojorque, G., Torbeyns, J., Van Hoof, J., Van Nijlen, D., y Verschaffel, L. (2018). Effectiveness of the Building Blocks program for enhancing Ecuadorian kindergartners’ numerical competencies. Early Childhood Research Quarterly, 44(3), 231–241. https://doi.org/10.1016/j.ecresq.2017.12.009
Bojorque, G., Torbeyns, J., Van Hoof, J., Van Nijlen, D., y Verschaffel, L. (2019). Influencia del nivel socioeconómico en el desarrollo de las competencias numéricas de los niños ecuatorianos de jardín infantil. Perfiles Educativos, 41(166), 90 – 104. https://doi.org/10.22201/iisue.24486167e.2019.166.59183
Clements, D., y Sarama, J. (2009). Learning and teaching early maths: The learning trajectories approach. NY: Routledge.
Collins, M. A., y Laski, E. V. (2015). Preschoolers’ strategies for solving visual pattern tasks. Early Childhood Research Quarterly, 32(3), 204–214. https://doi.org/10.1016/j.ecresq.2015.04.004
Degrande, T., Verschaffel, L., y Van Dooren, W. (2017). Spontaneous focusing on quantitative relations: Towards a characterization. Mathematical Thinking and Learning, 19(4), 260–275. https://doi.org/10.1080/10986065.2017.1365223
Field, A. (2009). Discovering statistics using SPSS (Third Edition). London, UK: SAGE.
Fox, J. (2005). Child-initiated mathematical patterning in the pre-compulsory years. In H. L. Chick y J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 313–320). Melbourne, Vic.: PME.
Geary, D. (2011). Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. doi: 10.1037/a0025510
Hannula, M. M. (2005). Spontaneous focusing on numerosity in the development of early mathematical skills. Annales Universitais Turkuensis B, 282. Painosalama: Turku.
Hannula, M. M., y Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15(3), 237–256. https://doi.org/10.1016/j.learninstruc.2005.04.005
Hannula, M. M., Lepola, J., y Lehtinen, E. (2010). Spontaneous focusing on numerosity as a domain-specific predictor of arithmetical skills. Journal of Experimental Child Psychology, 107(4), 394–406. DOI: 10.1016/j.jecp.2010.06.004
Hannula, M. M., Mattinen, A., y Lehtinen, E. (2005). Does social interaction influence 3-year-old children’s tendency to focus on numerosity? A quasi-experimental study in day-care. In L. Verschaffel, E. De Corte, G. Kanselaar, y M. Valcke (Eds.), Powerful learning environments for promoting deep conceptual and strategic learning (Studia Paedagogica Vol. 41, pp. 63–80). Leuven: Leuven University Press.
Hannula-Sormunen, M. M. (2015). Spontaneous focusing on numerosity and its relation to counting and arithmetic. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 275–290). Oxford, UK: Oxford University Press.
Hannula-Sormunen, M. M., Lehtinen, E., y Räsänen, P. (2015). Preschool children’s spontaneous focusing on numerosity, subitizing, and counting skills as predictors of their mathematical performance seven years later at school. Mathematical Thinking and Learning, 17(2-3), 155–177. https://doi.org/10.1080/10986065.2015.1016814
Hannula-Sormunen, M., Nanu, C., Luomaniemi, K., Heinonen, M., Sorariutta, A., Södervik, I., y Mattinen, A. (2020). Promoting spontaneous focusing on numerosity and cardinality-related skills at day care with one, two, how many and count, how many programs, Mathematical Thinking and Learning, 22(4), 312-331. https://doi.org/10.1080/10986065.2020.1818470
Lüken, M. (2012). Young children’s structure sense. Journal Für Mathematik-Didaktik, (33), 263–285. https://doi.org/10.1007/s13138-012-0036-8
Lüken, M. M. (2018). Repeating pattern competencies in three- to five-year old kindergartners: A closer look at strategies. In C. B. Iliada Elia, J. Mulligan, A. Anderson, y A. Baccaglini-Frank (Eds.), Contemporary research and perspectives on early childhood mathematics education (pp. 35–54). Hamburg: Springer.
Mason, J., Stephens, M., y Watson, A. (2009). Appreciating Mathematical structure for all. Mathematics Education Research Journal, 21(2), 10-32.
Mulligan, J. T., y Mitchelmore, M. C. (1997). Young children's intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28(3), 309– 330. https://doi.org/10.2307/749783
Mulligan, J., Prescott, A., y Mitchelmore, M. (2004). Children’s development of structure in early mathematics. In M. J. Høines y A. B. Fuglestad (Eds.), Proceedings of the 28th annual conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 393-400). Bergen, Norway: Program Committee.
Mulligan, J., y Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, (21), 33–49. https://doi.org/10.1007/BF03217544
Mulligan, J. T., Mitchelmore, M. C., English, L. D., y Robertson, G. (2010). Implementing a Pattern and Structure Mathematics Awareness Program (PASMAP) in kindergarten. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education (Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia, pp. 796–803). Fremantle: MERGA.
Mulligan, J. T., Papic, M., Prescott, A., y Mitchelmore, M. C. (2006). Improving early numeracy through a Pattern and Structure Mathematics Awareness Program (PASMAP). In P. Grootenboer, R. Zevenbergen, y M. Chinnappan (Eds.), Identities, cultures and learning spaces (Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia, Canberra, Vol. 2, pp. 376–383). Adelaide: MERGA.
Mulligan, J., Verschaffel, L., Baccaglini-Frank, A., Coles, A., Gould, P., He, S., . . . Yang, D. C. (2018). Whole number thinking, learning and development: Neuro-cognitive, cognitive and developmental approaches. En M. Bussi y X. Sun (Eds.), Primary mathematics study on whole numbers (ICMI Study 23, pp. 137–167). New York, NY: Springer.
Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D., Sarama, J., Wolfe, C., y Spitler, M. E. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Childhood Research Quarterly, 36(3), 550–560. https://doi.org/10.1016/j.ecresq.2016.02.003
Papic, M. (2007). Promoting repeating patterns with young children—more than just alternating colours! Australian Primary Mathematics Classroom, 12(3), 8–13.
Papic, M., Mulligan, J., y Mitchelmore, M. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–268. https://doi.org/10.5951/jresematheduc.42.3.0237
Platz, D. L. (2004). Challenging young children through simple sorting and classifying: A developmental approach. Education 125(1), 3–13.
Rathé, S., Torbeyns, J., De Smedt, B., y Verschaffel, L. (2019). Spontaneous focusing on Arabic number symbols and its association with early mathematical competencies. Early Childhood Research Quarterly, 48(3), 111–121. https://doi.org/10.1016/j.ecresq.2019.01.011
Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., y Farran, D. C. (2017). Early math trajectories: Low- income children’s mathematics knowledge from age 4 to 11. Child Development, 88(5), 1727– 1742. https://doi.org/10.1111/cdev.12662
Rittle-Johnson, B., Fyfe, E. R., Loehr, A. M., y Miller, M. R. (2015). Beyond numeracy in preschool: Adding patterns to the equation. Early Childhood Research Quarterly, 31(2), 101–112. https://doi.org/10.1016/j.ecresq.2015.01.005
Rittle-Johnson, B., Fyfe, E. R., McLean, L. E., y McEldoon, K. L. (2013). Emerging understanding of patterning in 4-year-olds. Journal of Cognition and Development, 14(3), 376–396. https://doi.org/10.1080/15248372.2012.689897
Seo, K.-H., y Ginsburg, H. (2004). What is developmentally appropriate in early childhood mathematics education? Lessons from new research. In D. Clements, J. Sarama, y A.-M. DiBiase (Eds.), Engaging young children in mathematics (pp. 91–104). Mahwah, NJ: Lawrence Erlbaum.
Sharir, T., Mashal, N., y Mevarech, Z. R. (2015). To what extent can young children spontaneously recognize mathematical structures? Paper presented at the Bienial Conference of the European Association for Research on Learning and Instruction, Limasol, Cyprus.
Starkey, P., Klein, A., y Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19(1), 99–120. https://doi.org/10.1016/j.ecresq.2004.01.002
Verschaffel, L., Rathe, S., Wijns, N., De Smedt, B., & Torbeyns, J. (2018). Young children’s early mathematical competencies: The role of mathematical focusing tendencies. Invited plenary lecture. Kristiansand, Norway, at the POEM conference.
Wijns, N., De Smedt, B., Verschaffel, L., y Torbeyns, J. (2019a). Are preschoolers who spontaneously create patterns better in mathematics? British Journal of Educational Psychology, 90(3), 753-769. https://doi.org/10.1111/bjep.12329
Wijns, N., Torbeyns, J., Bakker, M., De Smedt, B., y Verschaffel, L. (2019b). Four-year olds’ understanding of repeating and growing patterns and its association with early numerical ability. Early Childhood Research Quarterly, 49(4), 152–163. https://doi.org/10.1016/j.ecresq.2019.06.004
Wijns, N., Torbeyns, J., De Smedt, B., y Verschaffel, L. (2019c). Young children’s patterning competencies and mathematical development: A review. In K. Robinson, H. Osana, y D. Kotsopoulos, (Eds.), Mathematical learning and cognition in early childhood (pp. 139– 161). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-12895-1_9